AI Interpretability - data platform analysis
2022.07←2022.05
If the productized AI tool is ultimately GUI-style presentation, its main purpose is Visual Analytics, because visualization is the way computers convert data into information, transmit it and make it understandable. Applying visual analysis to data or models can achieve explainable, explorable, learnable, and participatory effects:
Interpretable: Data or models can use visualization to self-explain, discover patterns or explain anomalies; limitations of visualization Because there are few dimensions in a single analysis, multiple visualizations are usually displayed together;
Explorable: on the basis of visualization, unexpected surprises can be found through global display and interactive operations such as dimension combination, custom sorting, etc.;
Learnable: visualization is low-dimensional, so it can lower the threshold and improve learning efficiency for novices to understand data/models;
Participatory: models trained on past data cannot meet the prediction of new data, and the same applies to different scenarios Also, keeping the model accurate in different scenarios is a long-term process, and user participation can help with training.
The embedded PDF below corresponds to specific cases.
产品化的AI工具如果最终是GUI式的呈现,则主要的目的为Visual Analytics,因为可视化是计算机将数据转化为信息,传递并使人理解的方式。将可视化分析作用在数据或者模型上,可以达到可解释、 可探索、可学习、参与式的效果:
可解释interpretable: 数据或者模型能够利用可视化self-explain, 发现规律或者解释异常;可视的限制在于单次分析的维度较少,故 通常都是多张可视化配合展现;
可探索explorable: 在可视的基础上通过全局的展现、利用交互操 作如维度组合、自定义排序等,发现意外惊喜;
可学习learnable: 可视化是低维度的,所以在新手理解数据/模型 的学习上,能够降低门槛,提升学习效率;
参与式participatory: 过去的数据训练的模型无法满足新数据的预 测,同理不同场景也是,使模型在不同的场景中保持准确性是一个 长期的过程,用户的参与可以帮助到训练。
以下嵌入PDF是对应的具体案例: